
Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 1 of 29

Rational Unified Process: Overview

The Rational Unified Process® or RUP® product is a software engineering process. It provides a
disciplined approach to assigning tasks and responsibilities within a development organization. Its
goal is to ensure the production of high-quality software that meets the needs of its end users within a
predictable schedule and budget.

The RUP has two
dimensions:

 the horizontal axis
represents time and
shows the lifecycle
aspects of the process
as it unfolds

 the vertical axis
represents disciplines,
which group activities
logically by nature.

The first dimension
represents the dynamic
aspect of the process as it is
enacted, and it is expressed
in terms of phases,
iterations, and milestones.

The second dimension represents the static aspect of the process: how it is described in terms of
process components, disciplines, activities, workflows, artifacts, and roles.

The graph shows how the emphasis varies over time. For example, in early iterations, we spend more
time on requirements, and in later iterations we spend more time on implementation.

The RUP is now taken as the standard Unified Process (UP) by most of the software industries.

1. Key Concepts

1.1. Discipline

A discipline is a collection of related activities that are related to a major 'area of concern' within the
overall project. The grouping activities into disciplines is mainly an aid to understanding the project
from a 'traditional' waterfall perspective - typically, for example, it is more common to perform
certain requirements activities in close coordination with analysis and design activities. Separating
these activities into separate disciplines makes the activities easier to comprehend but more difficult
to schedule.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 2 of 29

Like other workflows, a
discipline's workflow is a semi-
ordered sequence of activities
which are performed to achieve a
particular result. The "semi-
ordered" nature of discipline
workflows emphasizes that the
discipline workflows cannot
present the real nuances of
scheduling "real work", for they
cannot depict the optionality of
activities or iterative nature of real
projects. Yet they still have value
as a way for us to understand the
process by breaking it into smaller
'areas of concern'.

Each 'area of concern' or discipline
has associated with it one or more
'models', which are in turn
composed of associated artifacts.
The most important artifacts are
the models that each discipline
yields: use-case model, design
model, implementation model and test suite.

For each discipline, an activity overview is also presented. The activity overview shows all activities
in the discipline along with the role that performs the activity. An artifact overview diagram is also
presented. This diagram
shows all artifacts and
roles involved in the
discipline.

It is useful to note that the
'discipline-centric'
organization of artifacts is
sometimes, though not
always, slightly different
from the artifact set
organization of artifacts.
The reason for this is
simple: some artifacts are
used across disciplines; a
strict discipline-centric
grouping makes it more
difficult to present an integrated process. If you are using only a part of the process, however, the
discipline-centric artifact overviews may prove more useful.

Each discipline is associated with a particular set of models.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 3 of 29

1.2. Workflow

A mere enumeration of all roles, activities and artifacts does not constitute a process; we need a way
to describe meaningful sequences of activities that produce some valuable result, and to show
interactions between roles. A workflow is a sequence of activities that produces a result of observable
value.

In UML terms, a workflow can be expressed as a sequence diagram, a collaboration diagram, or an
activity diagram. We use a form of activity diagrams in the RUP. For each discipline, an activity
diagram is presented. This diagram shows the workflow, expressed in terms of workflow details.

One of the great difficulties of
describing the process is that there
are many ways to organize the set of
activities into workflows. RUP is
organized using:

 Disciplines
 Workflow details

1.3. Workflow Detail

For most of the disciplines, you will
also find workflow detail diagrams,
which show groupings of activities
that often are performed "together".
These diagrams show roles
involved, input and output artifacts,
and activities performed. The
workflow detail diagrams are there
for the following reasons:

 The activities of a workflow
are neither performed in
sequence, nor done all at
once. The workflow detail
diagram shows how you
often will work in workshops
or team meetings while
performing a workflow. You
typically work in parallel on
more than one activity, and look at more than one artifact while doing that. There are several
workflow detail diagrams for a discipline.

 It becomes too complex to show input and output artifacts for all activities of a discipline in
one diagram. The workflow detail diagram allows us to show you activities and artifacts
together, for one part of a workflow at a time.

 The disciplines are not completely independent of one another. For example, integration
occurs in both the implementation and test disciplines, and in reality you never really do one
without the other. The workflow detail diagram can show a group of activities and artifacts in
the discipline, together with closely related activities in another discipline.

Sample activity diagram, from the requirements discipline, showing
workflow details and transitions.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 4 of 29

1.4. Role

The most central concept in the
Process is that of a role. A role
defines the behavior and
responsibilities of an
individual, or a set of
individuals working together as
a team, within the context of a
software engineering
organization. The Roles
Overview provides additional
information on roles.

Note that roles are not
individuals; instead, they
describe how individuals
should behave in the business
and the responsibilities of an
individual. Individual members
of the software development
organization will wear
different hats, or perform different roles. The mapping from individual to role, performed by the
project manager when planning and staffing the project, allows different individuals to act as several
different roles, and for a role to be played by several individuals.

1.5. Activity

Roles have activities that define the work they perform. An activity is something that a role does that
provides a meaningful result in the context of the project.

An activity is a unit of work that an individual playing the described role may be asked to perform.
The activity has a clear purpose, usually expressed in terms of creating or updating some artifacts,
such as a model, a class, a plan. Every activity is assigned to a specific role. The granularity of an
activity is generally a few hours to a few days, it usually involves one role, and affects one or only a
small number of artifacts. An activity should be usable as an element of planning and progress; if it
is too small, it will be neglected, and if it is too large, progress would have to be expressed in terms
of an activity’s parts.

Activities may be repeated several times on the same artifact, especially when going from one
iteration to another, refining and expanding the system, by the same role, but not necessarily the
same individual.

Steps

Activities are broken down into steps. Steps fall into three main categories:

 Thinking steps: where the individual performing the role understands the nature of the task,
gathers and examines the input artifacts, and formulates the outcome.

 Performing steps: where the individual performing the role creates or updates some artifacts.

Sample workflow detail diagram, from the requirements discipline.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 5 of 29

 Reviewing steps: where the individual performing the role inspects the results against some
criteria.

Not all steps are necessarily performed each time an activity is invoked, so they can be expressed in
the form of alternate flows.

Example of steps:

The Activity: Find use cases and actors decomposes into the steps:

1. Find actors
2. Find use cases
3. Describe how actors and use cases interact
4. Package use-cases and actors
5. Present the use-case model in use-case diagrams
6. Develop a survey of the use-case model
7. Evaluate your results

The finding part [steps 1 to 3] requires some thinking; the performing part [steps 4 to 6] involves
capturing the result in the use-case model; the reviewing part [step 7] is where the individual
performing the role evaluates the result to assess completeness, robustness, intelligibility, or other
qualities.

Work Guideline

Activities may have associated Work Guidelines, which present techniques and practical advice that
is useful to the role performing the activity.

1.6. Artifact

Activities have input and output artifacts. An artifact is a work product of the process: roles use
artifacts to perform activities, and produce artifacts in the course of performing activities. Artifacts
are the responsibility of a single role and promote the idea that every piece of information in the
process must be the responsibility of a specific person. Even though one person may "own" the
artifact, many other people may use the artifact, perhaps even updating it if they have been given
permission.

The diagram below shows how information flows through the project, via the artifacts; the arrows
show how changes in one artifact ripple through other artifacts along the arrows. For clarity, many
artifacts are omitted (e.g. the many artifacts in the design model are omitted, being represented by
the Artifact: Design Model).

To simplify the organization of artifacts, they are organized into "information sets", or artifact sets .
An artifact set is a grouping of related artifacts that tend to be used for a similar purpose. The
Artifact Overview presents more information on artifacts and artifact sets.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 6 of 29

Major artifacts in the process, and the approximate flow of information between them.

Artifacts may take various shapes or forms:

 A model, such as the Use-Case Model or the Design Model, which contains other artifacts.
 A model element, i.e. an element within a model, such as a Design Class, a Use Case or a

Design Subsystem
 A document, such as Business Case or Software Architecture Document
 Source code and executables (kinds of Components)
 Executables

Note that "artifact" is the term used in the RUP. Other processes use terms such as work product,
work unit, and so on, to denote the same thing. Deliverables are only the subset of all artifacts that
end up in the hands of the customers and end-users.

Artifacts are most likely to be subject to version control and configuration management. This is
sometimes only achieved by versioning the container artifact, when it is not possible to do it for the
elementary, contained artifacts. For example, you may control the versions of a whole design model,
or design package, and not of individual classes they contain.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 7 of 29

Artifacts are typically not documents. Many processes have an excessive focus on documents, and
in particular on paper documents. The RUP discourages the systematic production of paper
documents. The most efficient and pragmatic approach to managing project artifacts is to maintain
the artifacts within the appropriate tool used to create and manage them. When necessary, you may
generate documents (snapshots) from these tools, on a just- in-time basis. You should also consider
delivering artifacts to the interested parties inside and together with the tool, rather than on paper.
This approach ensures that the information is always up-to-date and based on actual project work,
and it shouldn’t require any additional effort to produce.

Examples of artifacts:

 A design model stored in Rational Rose.
 A project plan stored in Microsoft Project.
 A defect stored in Rational ClearQuest.
 A project requirements database in Rational RequisitePro.

However, there are still artifacts which have to be plain text documents, as in the case of external
input to the project, or in some cases where it is simply the best means of presenting descriptive
information.

 Artifact Guidelines and Checkpoints

Artifacts typically have associated guidelines and checkpoints which present information on how to
develop, evaluate and use the artifacts. Much of the substance of the Process is contained in the
artifact guidelines; the activity descriptions try to capture the essence of what is done, while the
artifact guidelines capture the essence of doing the work. The checkpoints provide a quick reference
to help you assess the quality of the artifact.

Both guidelines and checkpoints are useful in a number of contexts: they help you decide what to do,
they help you to do it, and they help you to decide if you've done a good job when you're done.

Template

Templates are "models," or prototypes, of artifacts. Associated with the artifact description are one or
more templates that can be used to create the corresponding artifacts. Templates are linked to the tool
that is to be used.

For example:

 Microsoft Word templates would be used for artifacts that are documents, and for some
reports.

 Rational SoDA templates for Microsoft Word or FrameMaker would extract information
from tools such as Rational Rose, Rational RequisitePro, or Rational TeamTest.

 Microsoft FrontPage templates for the various elements of the process.
 Microsoft Project template for the project plan.

As with guidelines, organizations may want to customize the templates prior to using them by adding
the company logo, some project identification, or information specific to the type of project.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 8 of 29

Report

Models and model elements, may have reports associated with them. A report extracts information
about models and model elements from a tool. For example, a report presents an artifact or a set of
artifacts for a review. Unlike regular artifacts, reports are not subject to version control. They can be
reproduced at any time by going back to the artifacts that generated them.

1.7. Tool Mentor

Activities, steps, and associated guidelines provide general guidance to the practitioner. To go one
step further, tool mentors are an additional means of providing guidance by showing how to perform
the steps using a specific software tool. Tool mentors are provided in the RUP, linking its activities
with tools such as Rational Rose, Rational RequisitePro, Rational ClearCase, Rational ClearQuest,
Rational Suite TestStudio. The tool mentors almost completely encapsulate the dependencies of the
process on the tool set, keeping the activities free from tool details. An organization can extend the
concept of tool mentor to provide guidance for other tools.

2. Rational Unified Process: Phases

The phases and milestones of a project

From a management perspective, the software lifecycle of the Rational Unified Process (RUP) is
decomposed over time into four sequential phases, each concluded by a major milestone; each phase
is essentially a span of time between two major milestones. At each phase-end an assessment is
performed to determine whether the objectives of the phase have been met. A satisfactory assessment
allows the project to move to the next phase.

Planning Phases

All phases are not identical in terms of schedule and effort. Although this varies considerably
depending on the project, a typical initial development cycle for a medium-sized project should
anticipate the following distribution between effort and schedule:

 Inception Elaboration Construction Transition
Effort ~5 % 20 % 65 % 10%

Schedule 10 % 30 % 50 % 10%

which can be depicted graphically as

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 9 of 29

For an evolution cycle, the inception and elaboration phases would be considerably smaller. Tools
which can automate some portion of the Construction effort can mitigate this, making the
construction phase much smaller than the inception and elaboration phases together.

One pass through the four phases is a development cycle; each pass through the four phases
produces a generation of the software. Unless the product "dies," it will evolve into its next
generation by repeating the same sequence of inception, elaboration, construction and transition
phases, but this time with a different emphasis on the various phases. These subsequent cycles are
called evolution cycles. As the product goes through several cycles, new generations are produced.

Evolution cycles may be triggered by user-suggested enhancements, changes in the user context,
changes in the underlying technology, reaction to the competition, and so on. Evolution cycles
typically have much shorter Inception and Elaboration phases, since the basic product definition and
architecture are determined by prior development cyc les. Exceptions to this rule are evolution
cycles in which a significant product or architectural redefinition occurs.

2.1. Phase: Inception

Objectives

The overriding goal of the inception phase is to achieve concurrence among all stakeholders on the
lifecycle objectives for the project. The inception phase is of significance primarily for new
development efforts, in which there are significant business and requirements risks which must be
addressed before the project can proceed. For projects focused on enhancements to an existing
system, the inception phase is more brief, but is still focused on ensuring that the project is both
worth doing and possible to do.

The primary objectives of the inception phase include:

 Establishing the project's software scope and boundary conditions, including an operational
vision, acceptance criteria and what is intended to be in the product and what is not.

 Discriminating the critical use cases of the system, the primary scenarios of operation that
will drive the major design trade-offs.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 10 of 29

 Exhibiting, and maybe demonstrating, at least one candidate architecture against some of the
primary scenarios

 Estimating the overall cost and schedule for the entire project (and more detailed estimates
for the elaboration phase that will immediately follow)

 Estimating potential risks (the sources of unpredictability)
 Preparing the supporting environment for the project.

Essential activities

 Formulating the scope of the project. This involves capturing the context and the most
important requirements and constraints to such an extent that you can derive acceptance
criteria for the end product.

 Planning and preparing a business case. Evaluating alternatives for risk management,
staffing, project plan, and cost/schedule/profitability trade-offs.

 Synthesizing a candidate architecture , evaluating trade-offs in design, and in
make/buy/reuse, so that cost, schedule and resources can be estimated. The aim here is to
demonstrate feasibility through some kind of proof of concept. This may take the form of a
model which simulates what is required, or an initial prototype which explores what are
considered to be the areas of high risk. The prototyping effort during inception should be
limited to gaining confidence that a solution is possible - the solution is realized during
elaboration and construction.

 Preparing the environment for the project, assessing the project and the organization,
selecting tools, deciding which parts of the process to improve.

2.2. Phase: Elaboration

Objectives

The goal of the elaboration phase is to baseline the architecture of the system to provide a stable
basis for the bulk of the design and implementation effort in the construction phase. The architecture
evolves out of a consideration of the most significant requirements (those that have a great impact on
the architecture of the system) and an assessment of risk. The stability of the architecture is evaluated
through one or more architectural prototypes.

The primary objectives of the elaboration phase include:

 To ensure that the architecture, requirements and plans are stable enough, and the risks
sufficiently mitigated to be able to predictably determine the cost and schedule for the
completion of the development. For most projects, passing this milestone also corresponds to
the transition from a light-and-fast, low-risk operation to a high cost, high risk operation with
substantial organizational inertia.

 To address all architecturally significant risks of the project
 To establish a baselined architecture derived from addressing the architecturally significant

scenarios, which typically expose the top technical risks of the project.
 To produce an evolutionary prototype of production-quality components, as well as possibly

one or more exploratory, throw-away prototypes to mitigate specific risks such as:
 design/requirements trade-offs
 component reuse
 product feasibility or demonstrations to investors, customers, and end-users.

 To demonstrate that the baselined architecture will support the requirements of the system at
a reasonable cost and in a reasonable time.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 11 of 29

 To establish a supporting environment.

In order to achieve this primary objectives, it is equally important to set up the supporting
environment for the project. This includes creating a development case, create templates, guidelines,
and setting up tools.

Essential activities

 Defining, validating and baselining the architecture as rapidly as practical.
 Refining the Vision, based on new information obtained during the phase, establishing a

solid understanding of the most critical use cases that drive the architectural and planning
decisions.

 Creating and baselining detailed iteration plans for the construction phase.
 Refining the development case and putting in place the development environment,

including the process, tools and automation support required to support the construction team.
 Refining the architecture and selecting components. Potential components are evaluated

and the make/buy/reuse decisions sufficiently understood to determine the construction phase
cost and schedule with confidence. The selected architectural components are integrated and
assessed against the primary scenarios. Lessons learned from these activities may well result
in a redesign of the architecture, taking into consideration alternative designs or
reconsideration of the requirements.

2.3. Phase: Construction

Objectives

The goal of the construction phase is on clarifying the remaining requirements and completing the
development of the system based upon the baselined architecture. The construction phase is in some
sense a manufacturing process, where emphasis is placed on managing resources and controlling
operations to optimize costs, schedules, and quality. In this sense the management mindset undergoes
a transition from the development of intellectual property during inception and elaboration, to the
development of deployable products during construction and transition.

The primary objectives of the construction phase include:

 Minimizing development costs by optimizing resources and avoiding unnecessary scrap and
rework.

 Achieving adequate quality as rapidly as practical
 Achieving useful versions (alpha, beta, and other test releases) as rapidly as practical
 Completing the analysis, design, development and testing of all required functionality.
 To iteratively and incrementally develop a complete product that is ready to transition to its

user community. This implies describing the remaining use cases and other requirements,
fleshing out the design, completing the implementation, and testing the software.

 To decide if the software, the sites, and the users are all ready for the application to be
deployed.

 To achieve some degree of parallelism in the work of development teams. Even on smaller
projects, there are typically components that can be developed independently of one another,
allowing for natural parallelism between teams (resources permitting). This parallelism can
accelerate the development activities significantly; but it also increases the complexity of
resource management and workflow synchronization. A robust architecture is essential if any
significant parallelism is to be achieved.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 12 of 29

Essential Activities

 Resource management, control and process optimization
 Complete component development and testing against the defined evaluation criteria
 Assessment of product releases against acceptance criteria for the vision.

2.4. Phase: Transition

Objectives

The focus of the Transition Phase is to ensure that software is available for its end users. The
Transition Phase can span several iterations, and includes testing the product in preparation for
release, and making minor adjustments based on user feedback. At this point in the lifecycle, user
feedback should focus mainly on fine tuning the product, configuring, installing and usability issues,
all the major structural issues should have been worked out much earlier in the project lifecycle.

By the end of the Transition Phase lifecycle objectives should have been met and the project should
be in a position to be closed out. In some cases, the end of the current life cycle may coincide with
the start of another lifecycle on the same product, leading to the next generation or version of the
product. For other projects, the end of Transition may coinc ide with a complete delivery of the
artifacts to a third party who may be responsible for operations, maintenance and enhancements of
the delivered system.

This Transition Phase ranges from being very straightforward to extremely complex, depending on
the kind of product. A new release of an existing desktop product may be very simple, whereas the
replacement of a nation's air-traffic control system may be exceedingly complex.

Activities performed during an iteration in the Transition Phase depend on the goal. For
example, when fixing bugs, implementation and test are usually enough. If, however, new features
have to be added, the iteration is similar to one in the construction phase requiring analysis & design,
etc.

The Transition Phase is entered when a baseline is mature enough to be deployed in the end-user
domain. This typically requires that some usable subset of the system has been completed with
acceptable quality level and user documentation so that transitioning to the user provides positive
results for all parties.

The primary objectives of the Transition Phase are:

 beta testing to validate the new system against user expectations
 beta testing and parallel operation relative to a legacy system that it's replacing
 converting operational databases
 training of users and maintainers
 roll-out to the marketing, distribution and sales forces
 deployment-specific engineering such as cutover, commercial packaging and production,

sales roll-out, field personnel training
 tuning activities such as bug fixing, enhancement for performance and usability
 assessment of the deployment baselines against the complete vision and the acceptance

criteria for the product
 achieving user self-supportability
 achieving stakeholder concurrence that deployment baselines are complete

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 13 of 29

 achieving stakeholder concurrence that deployment baselines are consistent with the
evaluation criteria of the vision

Essential activities

 executing deployment plans
 finalizing end-user support material
 testing the deliverable product at the development site
 creating a product release
 getting user feedback
 fine-tuning the product based on feedback
 making the product available to end users

3. Rational Unified Process: Iteration

3.1. Why Iterate?

Traditionally, projects have been organized to go through each discipline in sequence, once and only
once. This leads to the waterfall lifecycle:

This often results in an integration 'pile-
up' late in implementation when, for the
first time, the product is built and testing
begins. Problems which have remained
hidden throughout Analysis, Design and Implementation come boiling to the surface, and the project
grinds to a halt as a lengthy bug-fix cycle begins.

A more flexible (and less risky) way to proceed is to go several times through the various
development disciplines, building a better understanding of the requirements, engineering a robust
architecture, ramping up the development organization, and eventually delivering a series of
implementations that are gradually more complete. This is called an iterative lifecycle. Each pass
through the sequence of process disciplines is called an iteration.

Therefore, from a development
perspective the software
lifecycle is a succession of
iterations , through which the
software develops
incrementally. Each iteration
concludes with the release of
an executable product. This
product may be a subset of the
complete vision, but useful
from some engineering or user
perspective. Each release is
accompanied by supporting artifacts: release description, user documentation, plans, and so on, and
updated models of the system.

The main consequence of this iterative approach is that the sets of artifacts, described earlier, grow
and mature over time, as shown in the following diagram.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 14 of 29

3.2. What is an Iteration?

An iteration encompasses the development
activities that lead to a product release—a
stable, executable versions of product,
together with any other peripheral
elements necessary to use this release. So
a development iteration is in some sense
one complete pass through all the
disciplines: Requirements, Analysis &
Design, Implementation, and Test, at least.
It is like a small waterfall project in itself.
Note that evaluation criteria are
established when each iteration is planned.
The release will have planned capability
which is demonstrable. The duration of an
iteration will vary depending on the size
and nature of the project, but it is likely
that multiple builds will be constructed in
each iteration, as specified in the
Integration Build Plan for the iteration. This is a consequence of the continuous integration approach
recommended in the Rational Unified Process (RUP): as unit-tested components become available,
they are integrated, then a build is produced and subjected to integration testing. In this way, the
capability of the integrated software grows as the iteration proceeds, towards the goals set when the
iteration was planned. It could be argued that each build itself represents a mini- iteration, the
difference is in the planning required and the formality of the assessment performed. It may be
appropriate and convenient in some projects to construct builds on a daily basis, but these would not
represent iterations as the RUP defines them—except perhaps for a very small, single person project.
Even for small multi-person projects (for example, involving five people building 10,000 lines of
code), it would be very difficult to achieve an iteration duration of less than a week.

3.3. Release

A release can be internal or external. An internal release is used only by the development
organization, as part of a milestone, or for a demonstration to users or customers. An external release
(or delivery) is delivered to end users. A release is not necessarily a complete product, but can just be
one step along the way, with its usefulness measured only from an engineering perspective. Releases
act as a forcing function that drives the development team to get closure at regular intervals, avoiding
the "90% done, 90% remaining" syndrome.

Iterations and releases allow a better usage over time of the various specialties in the team: designers,
testers, writers, and so forth. Regular releases let you break down the integration and test issues and
spread them across the development cycle. These issues have often been the downfall of large
projects because all problems were discovered at once during the single massive integration step,
which occurred very late in the cycle, and where a single problem halts the whole team.

At each iteration, artifacts are updated. It is said that this is a bit like "growing" software. Instead of
developing artifacts one after another, in a pipeline fashion, they are evolving across the cycle,
although at different rates.

Information set evolution over the development phases.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 15 of 29

3.4. Minor milestone

Each iteration is concluded by a minor milestone, where the result of the iteration is assessed relative
to the objective success criteria of that particular iteration.

3.5. Iteration and Phases

Each phase in the RUP can be further
broken down into iterations. An
iteration is a complete development
loop resulting in a release (internal or
external) of an executable product, a
subset of the final product under
development, which grows
incrementally from iteration to
iteration to become the final system.

3.5.1. Iteration pattern: Incremental Lifecycle

"The incremental strategy determines user needs, and defines the system requirements, and then
performs the rest of the development in a sequence of builds. The first build incorporates parts of the
planned capabilities, the next build adds more capabilities, and so on until the system is complete."

The following iterations are characteristic:

 a short Inception iteration to establish scope and vision, and to define the business case
 a single Elaboration iteration, dur ing which requirements are defined, and the architecture

established
 several Construction iterations during which the use cases are realized and the architecture

fleshed-out
 several Transition iterations to migrate the product into the user community

This strategy is appropriate when:

 The problem domain is familiar.
 Risks are well-understood.
 The project team is experienced.

3.5.2. Iteration pattern: Evolutionary Lifecycle

"The evolutionary strategy differs from the incremental in acknowledging that user needs are not
fully understood, and all requirements cannot be defined up front, they are refined in each successive
build."

The following iterations are characteristic:

 a short Inception iteration to establish scope and vision, and to define the business case
 several Elaboration iterations, during which requirements are refined at each iteration

Each iteration within a phase results in an executable release of the
system.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 16 of 29

 a single Construction iteration, during
which the use cases are realized and the
architecture is expanded upon

 several Transition iterations to migrate
the product into the user community

This strategy is appropriate when:

 The problem domain is new or unfamiliar.
 The team is inexperienced.

3.5.3. Iteration pattern: Incremental Delivery Lifecycle

Some authors have also phased deliveries of incremental functionality to the customer. This may be
required where there are tight time-to-market pressures, where delivery of certain key features early
can yield significant business benefits.

In terms of the phase- iteration approach, the transition phase begins early on and has the most
iterations. This strategy requires a very stable architecture, which is hard to achieve in an initial
development cycle, for an "unprecedented" system.

The following iterations are characteristic:

 a short Inception iteration to establish
scope and vision, and to define the
business case

 a single Elaboration iteration, during
which a stable architecture is baselined

 a single Construction iteration, during
which the use cases are realized and the
architecture fleshed-out

 several Transition iterations to migrate the
product into the user community

This strategy is appropriate when:

 The problem domain is familiar:
 the architecture and requirements can be stabilized early in the development cycle
 there is a low degree of novelty in the problem
 The team is experienced.
 Incremental releases of functionality have high value to the customer.

3.5.4. Iteration pattern: "Grand Design" Lifecycle

The traditional waterfall approach can be seen as a degenerated case in which there is only one
iteration in the construction phase. It is called "grand design" in. In practice, it is hard to avoid
additional iterations in the transition phase.

The following iterations are characteristic:

 a short Inception iteration to establish scope and vision, and to define the business case

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 17 of 29

 a single very long Construction iteration, during which the use cases are realized and the
architecture fleshed-out

 several Transition iterations to migrate the product into the user community

This strategy is appropriate when:

 a small increment of well-defined
functionality is being added to a very
stable product

 the new functionality is well-defined and
well-understood

 The team is experienced, both in the
problem domain and with the existing
product

3.5.5. Iteration pattern: Hybrid Strategies

In practice few projects strictly follow one strategy. You often end up with a hybrid, some evolution
at the beginning, some incremental building, and multiple deliveries. Among the advantages of the
phase- iteration model is that it lets you accommodate a hybrid approach, simply by increasing the
length and number of iterations in particular phases:

 For complex or unfamiliar problem domains, where there is a high degree of exploration:
increase the number of iterations in the elaboration phase and its length.

 For more complex development problems, where there is complexity translating the design
into code: increase the number of iterations in the construction phase and its length.

 To deliver software in a series of incremental releases: increase the number of iterations in
the transition phase and its length.

4. Rational Unified Process: Disciplines

4.1. Introduction to Disciplines
A discipline shows all activities you may go through to produce a particular set of artifacts. We
describe these disciplines at an overview level—a summary of all roles, activities, and artifacts that
are involved. We also show, at a more detailed level, how roles collaborate, and how they use and
produce artifacts. The steps at this detailed level are called "workflow details".

4.2. Descriptions of Disciplines

4.2.1. Business Modeling: Overview

Purpose

The purposes of business modeling are:

 To understand the structure and the dynamics of the organization in which a system is to be
deployed (the target organization).

 To understand current problems in the target organization and identify improvement
potentials.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 18 of 29

 To ensure that customers, end users, and developers have a common understanding of the
target organization.

 To derive the system requirements needed to support the target organization.

To achieve these goals, the business modeling discipline describes how to develop a vision of the
new target organization, and based on
this vision define the processes, roles,
and responsibilities of that organization
in a business use-case model and a
business object model.

Complementary to these models, the
following artifacts are developed:

 Supplementary Business
Specification

 Glossary

Relation to Other Disciplines

The business modeling discipline is
related to other disciplines, as follows:

 The Requirements discipline
uses business models as an
important input to understanding
requirements on the system.

 The Analysis & Design
discipline uses business entities
as an input to identifying entity
classes in the design model.

 The Environment discipline
develops and maintains
supporting artifacts, such as the
Business-Modeling Guidelines.

4.2.2. Requirements: Overview

Purpose

The purpose of the Requirements discipline is:

 To establish and maintain agreement with the customers and other stakeholders on what the
system should do.

 To provide system developers with a better understanding of the system requirements.
 To define the boundaries of (delimit) the system.
 To provide a basis for planning the technical contents of iterations.
 To provide a basis for estimating cost and time to develop the system.
 To define a user-interface for the system, focusing on the needs and goals of the users.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 19 of 29

To achieve these goals, it is important, first of all, to understand the definition and scope of the
problem which we are trying to solve with this system. The Business Rules, Business Use-Case
Model and Business Object Model developed during Business Modeling will serve as valuable input
to this effort. Stakeholders are identified and Stakeholder Requests are elicited, gathered and
analyzed.

A Vision document, a use-case model, use cases and Supplementary Specification are developed to
fully describe the system - what the system will do - in an effort that views all stakeholders,
including customers and potential users, as important sources of information (in addition to system
requirements).

Stakeholder Requests are both
actively elicited and gathered from
existing sources to get a "wish list" of
what different stakeholders of the
project (customers, users, product
champions) expect or desire the
system to include, together with
information on how each request has
been considered by the project.

The Vision document provides a
complete vision for the software
system under development and
supports the contract between the
funding authority and the
development organization. Every
project needs a source for capturing
the expectations among stakeholders.
The vision document is written from
the customers' perspective, focusing
on the essential features of the system
and acceptable levels of quality. The
Vision should include a description of
what features will be included as well
as those considered but not included.
It should also specify operational
capacities (volumes, response times,
accuracies), user profiles (who will be using the system), and inter-operational interfaces with
entities outside the system boundary, where applicable. The Vision document provides the
contractual basis for the requirements visible to the stakeholders.

The use-case model should serve as a communication medium and can serve as a contract between
the customer, the users, and the system developers on the func tionality of the system, which allows:

 Customers and users to validate that the system will become what they expected.
 System developers to build what is expected.

The use-case model consists of use cases and actors. Each use case in the model is described in
detail, showing step-by-step how the system interacts with the actors, and what the system does in

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 20 of 29

the use case. Use cases function as a unifying thread throughout the software lifecycle; the same use-
case model is used in system analysis, design, implementation, and testing.

The Supplementary Specifications are an important complement to the use-case model, because
together they capture all software requirements (functional and nonfunctional) that need to be
described to serve as a complete software requirements specification.

A complete definition of the software requirements described in the use cases and Supplementary
Specifications may be packaged together to define a Software Requirements Specification (SRS) for
a particular "feature" or other subsystem grouping.

A Requirements Management Plan specifies the information and control mechanisms which will be
collected and used for measuring, reporting, and controlling changes to the product requirements.

Complementary to the above mentioned artifacts, the following artifacts are also developed:

 Glossary
 Use-Case Storyboard
 User-Interface Prototype

The Glossary is important because it defines a common terminology which is used consistently
across the project or organization.

The Use-Case Storyboard and User-Interface Prototype are all results of user-interface modeling and
prototyping, which are done in parallel with other requirements activities. These artifacts provide
important feedback mechanisms in later iterations for discovering unknown or unclear requirements.

Relation to Other Disciplines

The Requirements discipline is related to other process disciplines.

 The Business Modeling discipline provides Business Rules, a Business Use-Case Model and
a Business Object Model, including a Domain Model and an organizational context for the
system.

 The Analysis & Design discipline gets its primary input (the use-case model and the
Glossary) from Requirements. Flaws in the use-case model can be discovered during analysis
& design; change requests are then generated, and applied to the use-case model.

 The Test discipline validates the system against (amongst other things) the Use-Case Model.
Use Cases and Supplementary Specifications provide input on requirements used in the
definition of the evaluation mission, and in the subsequent test and evaluation activities.

 The Configuration & Change Management discipline provides the change control
mechanism for requirements. The mechanism for proposing a change is to submit a Change
Request, which is reviewed by the Change Control Board.

 The Project Management discipline plans the project and each iteration (described in an
Iteration Plan). The use-case model and Requirements Management Plan are important inputs
to the iteration planning activities.

 The Environment discipline develops and maintains the supporting artifacts that are used
during requirements management and use-case modeling, such as the Use-Case-Modeling
Guidelines and User-Interface Guidelines.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 21 of 29

4.2.3. Analysis & Design: Overview

Purpose

The purposes of Analysis & Design are:

 To transform the requirements into a
design of the system-to-be.

 To evolve a robust architecture for the
system.

 To adapt the design to match the
implementation environment, designing it
for performance.

Relation to Other Disciplines

The Analysis & Design discipline is related to
other disciplines, as follows:

 The Business Modeling discipline
provides a organizational context for the
system.

 The Requirements discipline provides the
primary input for Analysis and Design.

 The Test discipline tests system designed
during Analysis and Design.

 The Environment discipline develops and
maintains the supporting artifacts that are used during Analysis and Design.

 The Project Management discipline plans the project, and each iteration (described in an
Iteration Plan).

4.2.4. Implementation: Overview

Purpose

The purpose of implementation is:

 to define the organization of the code, in terms of implementation subsystems organized in
layers

 to implement classes and objects in terms of components (source files, binaries, executables,
and others)

 to test the developed components as units
 to integrate the results produced by individual implementers (or teams), into an executable

system

The Implementation discipline limits its scope to how individual classes are to be unit tested. System
test and integration test are described in the Test discipline.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 22 of 29

Relation to Other Disciplines

The implementation is related to other disciplines:

 The Requirements discipline describes how to, in a use-case model, capture requirements
that the implementation should fulfill.

 The Analysis & Design discipline describes how to develop a design model. The design
model represents the intent of the implementation, and is the primary input to the
Implementation discipline.

 The Test discipline describes how to integration test each build during the integration of the
system. It also describes how to test the system to verify that all requirements have been met,
as well as how defects are detected and submitted.

 The Environment discipline describes how to develop and maintain supporting artifacts that
are used during implementation, such as the process description, the design guidelines, and
the programming guidelines.

 The Deployment discipline describes how to use the implementation model to produce and
deliver the code to the end-customer.

 The Project Management discipline describes how to best plan the project. Important
aspects of the planning process are the iteration plan, change management and defect tracking
systems.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 23 of 29

4.2.5. Test: Overview

Purpose

The Test discipline acts in many respects as a service provider to the other disciplines. Testing
focuses primarily on the evaluation or assessment of product quality realized through a number of
core practices:

 Finding and documenting defects in software quality.
 Generally advising about perceived software quality.
 Proving the validity of the assumptions made in design and requirement specifications

through concrete demonstration.
 Validating the software product functions as designed.
 Validating that the requirements have been implemented appropriately.

An interesting difference between Test and the other disciplines in RUP is that Test is essentially
tasked with finding and exposing weaknesses in the
software product. That is interesting in that, to yield the
most benefit, it necessitates a different general
philosophy to that used in the Requirements, Analysis
and Design and Implementation disciplines. The
somewhat subtle difference is that while those other
disciplines focus on completeness, Test focuses on
incompleteness. A good test effort is driven by questions
such as "How could this software break?" and "In what
possible situations could this software fail to work
predictably?". Test challenges the assumptions, risks and
uncertainty inherent the work of the other disciplines,
addressing those concerns by concrete demonstration and
impartial evaluation. The challenge is to avoid two
potential extremes: an approach that does not suitably and
effectively challenge the software and expose it's inherent
problems and weaknesses, and an approach that is
inappropriately negative or destructive. Adopting such a
negative approach you will likely never find it possible to
consider the software product of acceptable quality, and
will likely alienate the Test effort from the other
disciplines.

Based on information presented in various surveys and
essays, software testing is said to account for 30 to 50
percent of total software development costs. It is
therefore perhaps surprising to note that most people
believe computer software is not well tested before it is
delivered. This contradiction is rooted in a few key
issues.

First, testing software is enormously difficult. The different ways a given program can behave are
unquantifiable. Second, testing is typically done without a clear methodology so results vary from
project to project, organization to organization: success is primarily a factor of the quality and skills
of the individuals. Third, insufficient use is made of productivity tools, making the laborious aspects

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 24 of 29

of testing manageable: in addition to the lack of automated test execution, many test efforts are
conducted without tools that allow the effect management of extensive Test Data and Test Results.
While the flexibility of use and complexity of software makes complete testing an impossible goal, a
well-conceived methodology and use of state-of-the-art tools, can help to improve the productivity
and effectiveness of the software testing.

For "safety-critical" systems where a failure can harm people (such as air-traffic control, missile
guidance, or medical delivery systems), high-quality software is essential for the success of the
system. For a typical MIS system, the criticality of the system may not be as immediately obvious,
but it's likely that the impact of a defect could cause the business using the software considerable
expense in lost revenue or possibly legal costs. In this "information age", with increasing demand on
provision of electronically delivered services over the Internet, many MIS systems are now
considered "mission-critical"; that is, companies cannot fulfill their functions and experience massive
losses when failures occur.

A continuous approach to quality, initiated early in the software lifecycle, can significantly lower the
cost of completing and maintaining the software. This greatly reduces the risk associated with
deploying poor quality software.

Relation to Other Disciplines

The Test discipline is related to other disciplines.

 The Requirements discipline captures requirements for the software product, and those
requirements are one of the primary inputs fo r identifying what tests to perform.

 The Analysis & Design discipline determines the appropriate design for the software
product; this is the another important input for identifying what tests to perform.

 The Implementation discipline produces builds of the software product that are validated by
the Test discipline. Within an iteration multiple builds will be tested, typically one per test
cycle.

 The Environment discipline develops and maintains supporting artifacts that are used during
test, such as the Test Guidelines and Test Environment.

 The Management discipline plans the project, and the necessary work in each iteration.
Described in an Iteration Plan, this artifact is an important input to defining the correct
evaluation mission for the test effort.

 The Configuration & Change Management discipline controls change within the project
team. The test effort verifies that each change has been completed appropriately.

4.2.6. Deployment: Overview

Purpose

The Deployment Discipline describes the activities associated with ensuring that the software
product is available for its end users.

The Deployment Discipline describes three modes of product deployment:

 the custom install
 the "shrink wrap" product offering
 access to software over the internet

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 25 of 29

In each instance, there is an emphasis on testing the product at the development site, followed by
beta-testing before the product is finally released to the customer.

Although deployment activities peak in the Transition Phase, some of the activities occur in earlier
phases to plan and prepare for deployment.

Relation to Other Disciplines

The deployment discipline is related to other disciplines, as follows:

 The Requirements discipline produces
the Software Requirements
Specifications that consists of the use-
case model and non-functional
requirements. Together with the User-
Interface Prototype, the Software
Requirements specification is one of the
key inputs to developing End-User
Support Materials and Training
Materials.

 Testing is an indispensable part of
deployment, and the essential artifacts
from the Test discipline are the Test
Model, Test Results, and activities for
managing, executing, and evaluating test
results.

 The Configuration & Change
Management discipline is referenced
for providing the baselined build, and
releasing the product and mechanisms
for handling Change Requests that are
generated as result of beta-tests and
acceptance tests.

 In the Project Management discipline,
the activities to develop an Iteration Plan
and a Software Development Plan are
influential on developing the
Deployment Plan. Also, the work to
produce a Product Acceptance plan has
to be coordinated with how you manage
acceptance test in the Deployment
discipline.

 The Environment discipline provides the supporting test environment.

4.2.7. Configuration & Change Management: Overview

Introduction

To paraphrase the Software Engineering Institute's Capability Maturity Model (SEI CMM)
'Configuration and Change Request Management controls change to, and maintains the integrity of, a
project’s artifacts'.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 26 of 29

Configuration and Change Request Management (CM and CRM) involves:

 identifying configuration items,
 restricting changes to those items,
 auditing changes made to those items, and
 defining and managing configurations of those items.

The methods, processes,
and tools used to provide
change and configuration
management for an
organization can be
considered as the
organization’s CM System.

An organization's
Configuration and Change
Request Management
System (CM System) holds
key information about its
product development,
promotion, deployment and
maintenance processes, and
retains the asset base of
potentially re-usable
artifacts resulting from the
execution of these
processes.

The CM System is an essential and integral part of the overall development processes.

Purpose

A CM System is essential for controlling the numerous artifacts produced by the many people who
work on a common project. Control helps avoid costly confusion, and ensures that resultant artifacts
are not in conflict due to some of the following kinds of problems:

 Simultaneous Update
 Limited Notification
 Multiple Versions

Simultaneous Update

When two or more team members work separately on the same artifact, the last one to make changes
destroys the work of the former. The basic problem is that if a system does not support simultaneous
update this leads to serial changes and slows down the development process. However, with
simultaneous update, the challenge is to detect that updates have occurred simultaneously and to
resolve any integration issues when these changes are incorporated

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 27 of 29

Limited Notification

When a problem is fixed in artifacts shared by several developers, and some of them are not notified
of the change.

Multiple Versions

Most large programs are developed in evolutionary releases. One release could be in customer use,
while another is in test, and the third is still in development. If problems are found in any one of the
versions, fixes need to be propagated between them. Confusion can arise leading to costly fixes and
re-work unless changes are carefully controlled and monitored.

A CM System is useful for managing multiple variants of evolving software systems, tracking which
versions are used in given software builds, performing builds of individual programs or entire
releases according to user-defined version specifications, and enforcing site-specific development
policies.

Some of the direct benefits provided by a CM System are that it:

 supports development methods,
 maintains product integrity,
 ensures completeness and correctness of the configured product,
 provides a stable environment within which to develop the product,
 restricts changes to artifacts based on project policies, and
 provides an audit trail on why, when and by whom any artifact was changed.

In addition, a CM System stores detailed ‘accounting’ data on the development process itself: who
created a particular version (and when, and why), what versions of sources went into a particular
build, and other relevant information.

Relation to Other Disciplines

An organization’s CM System is used throughout the product’s lifecycle, from inception to
deployment. As an organization’s asset repository, the CM system contains current and historical
versions of source files of requirements, design and implementation artifacts that define a particular
version of a system or a system component

The Product Directory Structure, represented in the CM System, contains all the artifacts required to
implement the product. As such, the Configuration & Change Management (CCM) discipline is
related to all the other process disciplines as it serves as a repository for their resultant sets of
artifacts.

 The Business Modeling Set,
 The Requirements Set,
 The Analysis & Design Set,
 The Implementation Set,
 The Test Set,
 The Deployment Set,
 The Configuration & Change Management Set,
 The Project Management Set, and
 The Environment Set.

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 28 of 29

4.2.8. Project Management: Overview

Introduction

Software Project Management is the art of balancing competing objectives, managing risk, and
overcoming constraints to successfully deliver a product which meets the needs of both customers
(the payers of bills) and the users. The fact that so few projects are unarguably successful is comment
enough on the difficulty of the task.

Purpose

Our goal with this section is to make the task easier by providing some context for Project
Management. It is not a recipe for success, but it presents an approach to managing the project that
will markedly improve the odds of delivering successful software.

The purpose of Project Management is:

 To provide a framework for managing software- intensive projects.
 To provide practical guidelines for planning, staffing, executing, and monitoring projects.
 To provide a framework for managing risk.

However, this discipline of the Rational Unified Process (RUP) does not attempt to cover all aspects
of project management. For example, it does not cover issues such as:

Object Oriented Analysis and Design Rational Unified Process

Compiled by Roshan Chitrakar 29 of 29

 Managing people: hiring, training, coaching
 Managing budget: defining, allocating, and so forth
 Managing contracts, with suppliers and customers

This discipline focuses mainly on the important aspects of an iterative development process:

 Risk management
 Planning an iterative project, through the lifecycle and for a particular iteration
 Monitoring progress of an iterative project, metrics

Relation to Other Disciplines

The Project Management Discipline provides the framework whereby a project is created and
managed. In doing so, all other disciplines are utilized as part of the project work:

 Business Modeling discipline
 Requirement discipline
 Analysis & Design discipline
 Implementation discipline
 Test discipline
 Deployment discipline

The Project Management Discipline is one of the supporting process disciplines, together with:

 Configuration & Change Management discipline
 Environment discipline

4.2.9. Environment: Overview

Purpose

The environment discipline focuses on the activities necessary to
configure the process for a project. It describes the activities
required to develop the guidelines in support of a project. The
purpose of the environment activities is to provide the software
development organization with the software development
environment—both processes and tools—that will support the
development team.

Relation to Other Disciplines

The Environment discipline provides the supporting environment
for a project. In doing so, it supports all other disciplines.

Sources:

• Rational Rose Enterprise Suite, Release Version 2002.05.20
• http://www.rational.com

