
Object Oriented Analysis and Design Object Design with Patterns

Compiled by Roshan Chitrakar 1 of 13

Object design with Patterns

1. Introduction
After identifying your requirements and creating a domain model, the method of object design is
carried out by adding methods to the software classes, and defining the messaging between the
objects to fulfill the re quirements. There are deep principles and issues involved in these steps.
Deciding what methods belong where, and how the objects should interact, is important. And, this is
a critical step - this is at the heart of what it means to develop an object-oriented system, not drawing
domain model diagrams, package diagrams, and so forth.

It is possible to communicate the detailed principles and reasoning required to grasp basic object
design, and to learn to apply these in a methodical approach that removes the magic and vagueness.
The GRASP patterns are a learning aid to help one understand essential object design, and apply
design reasoning in a methodical, rational, explainable way. This approach to understanding and
using design principles is based on patterns of assigning responsibilities,

2. Responsibilities and Methods
A responsibility is defined as “a contract or obligation of a classifier.” Responsibilities are related to
the obligations of an object in terms of its behavior. Basically, these responsibilitie s are of the
following two types:

1. Knowing

2. Doing

Doing responsibilities of an object include:

• doing something itself, such as creating an object or

• doing a calculation

• initiating action in other objects

• controlling and coordinating activities in other objects

Knowing responsibilities of an object include:

• knowing about private encapsulated data knowing about related objects

• knowing about things it can derive or calculate

Responsibilities are assigned to classes of objects during object design. Relevant responsibilities
related to “knowing” are often inferable from the domain model, because of the attributes and
associations it illustrates. The translation of responsibilities into classes and methods is influenced by
the granularity of the responsibility. The responsibility to ‘provide access to relational databases”
may involve dozens of classes and hundreds of methods, packaged in a subsystem.

A responsibility is not the same thing as a method, but methods are implemented to fulfill
responsibilities. Respons ibilities are implemented using methods that either act alone or collaborate
with other methods and objects.

3. Responsibilities and Interaction Diagrams
Fundamental principles for assigning responsibilities to objects are applied methodically during the
programming. A common context where these responsibilities (implemented as methods) are
considered is during the creation of interaction diagrams (which are part of the UP Design Model).

Object Oriented Analysis and Design Object Design with Patterns

Compiled by Roshan Chitrakar 2 of 13

The figure indicates that Sale objects have been given a responsibility to create Payments, which is
invoked with a makePayment message and handled with a corresponding makePayment method.
Furthermore, the fulfillment of this responsibility requires collaboration to create the SalesLineltem
object and invoke its constructor.

Responsibility: to create Payments

In summary, interaction diagrams show choices in assigning responsibilities to objects. When
created, decisions in responsibility assignment are made, which are reflected in what messages are
sent to different classes of objects. These choices are reflected in interaction diagrams.

4. Patterns
Experienced object-oriented developers (and other software developers) buildup a repertoire of both
general principles and idiomatic solutions that guide them in the creation of software. These
principles and idioms, if codified in a structured format describing the problem and solution, and
given a name, may be called patterns.

An example of a Pattern

Pattern Name : Information Expert

Solution: Assign a responsibility to the class that has the information needed to fulfill it.

Problem It Solves: What is a basic principle by which to assign responsibilities to objects?

In object technology, a pattern is a named description of a problem and solution that can be applied
to new contexts; ideally, it provides advice in how to apply it in varying circumstances, and
considers the forces and trade-offs. Many patterns provide guidance for how responsibilities should
be assigned to objects, given a specific category of problem.

“One person’s pattern is another person’s primitive building block” is an object technology adage
illustrating the vagueness of what can be called a pattern. This treatment of patterns will bypass the
issue of what is appropriate to label a pattern, and focus on the pragmatic value of using the pattern
style as a vehicle for naming, presenting, learning, and remembering useful software engineering
principles.

All patterns ideally have suggestive names. Naming a pattern, technique, or principle has the
following advantages;

• It supports chunking and incorporating that concept into our understanding and memory.

• It facilitates communication.

makePayment(cashTendered)
create(cashTendered)

: Sale

: Payment

Object Oriented Analysis and Design Object Design with Patterns

Compiled by Roshan Chitrakar 3 of 13

Naming a complex idea such as a pattern is an example of the power of abstraction - reducing a
complex form to a simple one by eliminating de tail. When a pattern is named, we can discuss with
others a complex principle or design idea with a simple name. Also, chunking design idioms and
principles with commonly understood names facilitate communication and raises the level of inquiry
to a higher degree of abstraction

5. GRASP
They describe fundamental principles of object design and responsibility assignment, expressed as
patterns. Understanding and being able to apply these principles during the creation of interaction
diagrams is important because a software developer new to object technology needs to master these
basic principles as quickly as possible; they form the foundation of how a system will be designed.

GRASP is an acronym that stands for General Responsibility Assignment Software Patterns. The
name suggests the importance of grasping these principles to successfully design object-oriented
software.

5.1. The first five GRAS Patterns

1. Information Expert

2. Creator

3. High Cohesion

4. Low Coupling

5. Controller

5.1.1. Information Expert (or Expert)

Information Expert is frequently used in the assignment of responsibilities; it is a basic guiding
principle used continuously in object design. Expert is not meant to be an obscure or fancy idea; it
expresses the common intuition that objects do things related to the information they have.

The fulfillment of a responsibility often requires information that is spread across different classes of
objects. This implies that there are many “partial” information experts who will collaborate in the
task. Whenever information is spread across different objects, they will need to interact via messages
to share the work.

Expert usually leads to designs where a software object does those operations that are normally done
to the inanimate real-world thing it represents. For example, in the real world, without the use of
electro-mechanical aids, a sale does not tell you it total; it is an inanimate thing. Someone calculates
the total of the sale. But in object-oriented software land, all software objects are “alive” or
“animated,” and they can take on responsibilities and do things. Fundamentally, they do things
related to the information they know.

The Information Expert pattern - like many things in object technology - has a real analogy. We
commonly give responsibility to individuals who have the information necessary to fulfill a task.

By Information Expert, we should look for that class of objects that has the information needed to
determine the total. We look both in the Domain Model and the Design Model to analyze the classes
that have the information needed. The Domain Model illustrates conceptual classes of the real-world
domain; the Design Model illustrates software classes.

5.1.1.1.Problem/Solution pair
Solution: - Assign a responsibility to the information expert—the class that has the information

necessary to fulfill the responsibility.

Object Oriented Analysis and Design Object Design with Patterns

Compiled by Roshan Chitrakar 4 of 13

Problem: - What is a general principle of assigning responsibilities to objects?

A Design Model may define hundreds or thousands of software classes, and an
application may require hundreds or thousands of responsibilities to be fulfilled. During
object design, when the interactions between objects are defined, we make choices about
the assignment of responsibilities to software classes. Done well, systems tend to be
easier to understand, maintain, and extend, and there is more opportunity to reuse
components in future applications.

5.1.1.2.Example: -
Consider the following partial domain model: -

The problem here is knowing the grand total of a sale. According to the principles of Information
Expert

1. If there are relevant classes in the Design Model, look there first.

2. Else, look in the Domain Model, and attempt to use (or expand) its representations to inspire
the creation of corresponding design classes.

It is necessary to know about all the SalesLineltem instances of a sale and the sum of their subtotals.
A Sale instance contains these; therefore, by the guideline of Information Expert, Sale is a suitable
class of object for this responsibility; it is an information expert for the work.

SalesLineItem.quantity and ProductSpecification .price are also needed to determine the line item
subtotal. The former know its quantity and its associated ProductSspecification ; therefore, by Expert,
SalesLineItem should determine the subtotal; it is the information expert.

Now, the solution can be represented by mean of the interaction design as shown below.

Object Oriented Analysis and Design Object Design with Patterns

Compiled by Roshan Chitrakar 5 of 13

5.1.1.3.Benefits
Information encapsulation is maintained, since objects use their own information to fulfill tasks. This
usually supports low coupling, which leads to more robust and maintainable systems. Behavior is
distributed across the classes that have the required information, thus encouraging more cohesive
“lightweight” class definitions that are easier to understand and maintain. High cohesion is usually
supported.

5.1.1.4.Contraindications
There are situations where a solution suggested by Expert is undesirable, usually because of
problems in coupling and cohesion.

5.1.2. Creator

Creator guides assigning responsibilities related to the creation of objects. The basic intent of the
Creator pattern is to find a creator that needs to be connected to the created object in any event.

The concept of aggregation is used in considering the Creator pattern. Aggregation involves things
that are in a strong Whole-Part or Assembly-Part relationship, such as Body aggregates Leg or
Paragraph aggregates Sentence. Aggregate aggregates Part, Container contains Contents, and
Recorder records Recorded are all very common relationships between classes in a class diagram.
The only guideline of the Creator is that the enclosing container or recorder class is a good candidate
for the responsibility of creating the thing contained or recorded.

Sometimes a creator is found by looking for the class that has the initializing data that will be passed
in during creation. This is actually an example of the Expert pattern. Initializing data is passed in
during creation via some kind of initialization method, such as a Java constructor that has
parameters. For example, assume that a Payment instance needs to be initialized, when created, with
the Sale total. Since Sale knows the total, Sale is a candidate creator of the Payment.

5.1.2.1.Problem/Solution pair
Solution: Assign class B the responsibility to create an instance of class A if one or more of the

following is true:

• B aggregates A objects.

• B contains A objects.

• B records instances of A objects.

• B closely uses A objects,

• B has the initializing data that will be passed to A when it is created (thus B is an
Expert with respect to creating A).

B is a creator of A objects. If more than one option applies, prefer a class B that
aggregates or contains class A.

Problem: Who should be responsible for creating a new instance of some class?

The creation of objects is one of the most common activities in an object-oriented system.
Consequently, it is useful to have a general principle for the assignment of creation
responsibilities. Assigned well, the design can support low coupling, increased clarity,
encapsulation and reusability.

5.1.2.2.Example:
Consider the partial domain model in the figure given below.

Object Oriented Analysis and Design Object Design with Patterns

Compiled by Roshan Chitrakar 6 of 13

Who should be responsible for creating a SalesLineltem instance? By Creator, we should look for a
class that aggregates, contains, and so on, SalesLineltem instances. Since a Sale contains (in fact,
aggregates) many SalesLineltem objects, the Creator pattern suggests that Sale is a good candidate to
have the responsibility of creating SalesLineltem instances.

This leads to a design of object interactions as shown in the figure below.

This assignment of responsibilities requires that a makeLineltem method be defined in Sale. The
method section of a class diagram can then summarize the responsibility assignment results,
concretely realized as methods.

5.1.2.3.Benefits
Low coupling is supported, which implies lower maintenance dependencies and higher opportunities
for reuse. Coupling is probably not increased because the created class is likely already visible to the
creator class, due to the existing associations that motivated its choice as creator.

5.1.2.4.Contraindications
Often, creation requires significant complexity, such as using recycled instances for performance
reasons, conditionally creating an instance from one of a family of similar classes based upon some
external property value, and so forth. In these cases, it is advisable to delegate creation to a helper
class called a Factory rather than use the class suggested by Creator.

Object Oriented Analysis and Design Object Design with Patterns

Compiled by Roshan Chitrakar 7 of 13

5.1.3. Low Coupling

Low Coupling is a principle to keep in mind during all design decisions; it is an underlying goal to
continually consider. It is an evaluative principle that a designer applies while evaluating all design
decisions.

In object-oriented languages such as C++. Java, and C common forms of coupling from TypeX to
TypeY include:

• TypeX has an attribute (data member or instance variable) that refers to a TypeY instance, or
Y itself

• A TypeX object calls on services of a Type object.

• TypeX has a method that references an instance of TypeY or TypeY itself, by any means.
These typically include a parameter or local variable of type TypeY, or the object returned
from a message being an instance of TypeY.

• TypeX is a direct or indirect subclass of TypeY

• TypeY is an interface, and TypeX implements that interface.

Low Coupling encourages assigning a responsibility so that its placement does not increase the
coupling to such a level that it leads to the negative results that high coupling can produce. Low
Coupling supports the design of classes that are more independent, which reduces the impact of
change. A subclass is strongly coupled to its superclass. The decision to derive from a superclass
needs to be carefully considered since it is such a strong form of coupling.

For example, suppose that objects need to be stored persistently in a relational or object database. In
this case it is a relatively common design to create an abstract superclass called PersistentObjeet
from which other classes derive. The disadvantage of this subclassing is that it highly couples
domain objects to a particular technical service and mixes different architectural concerns, whereas
the advantage is automatic inheritance of persistence behavior.

The extreme case of Low Coupling is when there is no coupling between classes. This is not
desirable because a central metaphor of object technology is a system of connected objects that
communicate via messages. If Low Coupling is taken to excess, it yields a poor design because it
leads to a few incohesive, bloated, and complex active objects that do all the work, with many very
passive zero-coupled objects that act as simple data repositories. Some moderate degree of coupling
between classes is normal and necessary to create an object-oriented system in which tasks are
fulfilled by a collaboration between connected objects.

5.1.3.1.Problem/Solution pair
Solution: Assign a responsibility so that coupling remains low.

Problem: How to support low dependency, low change impact, and increased reuse?

Coupling is a measure of how strongly one element is connected to, has knowledge of, or
relies on other elements. An element with low (or weak) coupling is not dependent on too
many other elements.. These elements include classes, subsystems, systems, and so on.

A class with high (or strong) coupling relies on many other classes. Such classes may be
undesirable; some suffer from the following problems:

• Changes in related classes force local changes.

• Harder to understand in isolation.

• Harder to reuse because its use requires the additional presence of the classes on
which it is dependent.

Object Oriented Analysis and Design Object Design with Patterns

Compiled by Roshan Chitrakar 8 of 13

5.1.3.2.Example
Consider the partial domain containing classes Payment, Register and Sale from the previous
example. Assume we have a need to create a Payment instance and associate it with the Sale. What
class should be responsible for this? Since a Register “records” a Payment in the real-world domain,
the Creator pattern suggests Register as a candidate for creating the Payment. The Register instance
could then send an addPayment message to the Sale, passing along the new Payment as a parameter.

A possible partial interaction diagram reflecting this is shown in the figure below.

This assignment of responsibilities couples the Register class to knowledge of the Payment class.

An alternative solution to creating the Payment and associating it with the Sale is shown below.

In both cases we will assume the Sale must eventually be coupled to knowledge of a Payment,
Design 1, in which the Register creates the Payment, adds coupling of Register to Payment, while
Design 2, in which the Sale does the creation of a Payment, does not increase the coupling. Purely
from the point of view of coupling, Design 2 is preferable because overall lower coupling is
maintained. This an example where two patterns - Low Coupling and Creator - may suggest different
solutions.

5.1.3.3.Contraindication
High coupling to stable elements and to pervasive elements is seldom a problem, For example, a Java
J2EE application can safely couple itself to the Java libraries (java.util, and so on), because they are
stable and widespread.

5.1.3.4.Benefits
• not affected by changes in other components

• simple to understand in isolation

• convenient to reuse

Object Oriented Analysis and Design Object Design with Patterns

Compiled by Roshan Chitrakar 9 of 13

5.1.4. High Cohesion

Like Low Coupling, High Cohesion is a principle to keep in mind during all design decisions; it is an
underlying goal to continually consider. It is an evaluative principle that a designer applies while
evaluating all design decisions.

Grady Booch describes high functional cohesion as existing when the elements of a component (such
as a class) “all work together to provide some well-bounded behavior.”

Here are some scenarios that illustrate varying degrees of functional cohesion:

1. Very low cohesion: A class is solely responsible for many things in very different functional
areas. Assume there exists a class called RDB-RPC-Interface, which is completely responsible
for interacting with relational databases and for handling remote procedure calls. These are two
vastly different functional areas, and each requires lots of supporting code. The responsibilities
should be split into a family of classes related to RDB access and a family related to RPC
support.

2. Low cohesion: A class has sole responsibility for complex task in one functional area. Assume
that there exists a class called RDBInterface, which is completely responsible for interacting with
relational databases. The methods of the class are all related, but there are lots of them, and a
tremendous amount of supporting code; there may be hundreds of thousands of methods. The
class should split into a family of lightweight classes sharing the work to provide RDB access.

3. High cohesion: A class has moderate responsibilities in one functional area and collaborates
with other classes to fulfill tasks. Assume that there exists a class called RDBInterface , which is
only partially responsible for interacting with relational databases. It interacts with a dozen other
classes related to RDB access in order to retrieve and save objects.

4. Moderate cohesion: A class has lightweight and sole responsibilities in a few different areas that
are logically related to the class concept, but not to each other. Assume that there exists a class
called Company, which is completely responsible for (a) knowing its employees and (b) knowing
its financial information. These two areas are not strongly related to each other, although both are
logically related to the concept of a company: In addition, the total number of public methods is
small, as is the amount of supporting code.

As a rule of thumb, a class with high cohesion has a relatively small number of methods, with highly
related functionality, and does not do too much work. It collaborates with other objects to share the
effort if the task is large.

5.1.4.1.Problem/Solution pair
Solution: Assign a responsibility so that cohesion remains high.

Problem: How to keep complexity manageable?

In terms of object design, cohesion (or more specifically, functional cohesion) is a
measure of how strongly related and focused the responsibilities of an element are. An
element with highly related responsibilities, and which does not do a tremendous amount
of work, has high cohesion. These elements include classes, subsystems, and soon.

A class with low cohesion does many unrelated things, or does too much work. Such
classes are undesirable; they suffer from the following problems:

• hard to comprehend

• hard to reuse

• hard to maintain

• delicate; constantly effected by change

Object Oriented Analysis and Design Object Design with Patterns

Compiled by Roshan Chitrakar 10 of 13

Low cohesion classes often represent a very ‘large grain” of abstraction, or have taken on
responsibilities that should have been delegated to other objects.

5.1.4.2.Example
The same example problem used for the Low Coupling pattern can be analyzed for High Cohesion,

Assume we have a need to create a (cash) Payment instance and associate it with the Sale. What
class should be responsible for this? Since Register records a Payment in the real-world domain, the
Creator pattern suggests Register as a candidate for creating the Payment. The Register instance
could then send an addPayment message to the Sale, passing along the new Payment as a parameter,
as shown in the figure below:

This assignment of responsibilities places the responsibility for making a payment in the Register.
The Register is taking on part of the responsibility for fulfilling the makePayment system operation.

In this isolated example, this is acceptable; but if we continue to make the Register class responsible
for doing some or most of the work related to more and more system operations, it will become
increasingly burdened with tasks and become incohesive.

Imagine that there were fifty system operations, all received by Register. If it did the work related to
each, it would become a “bloated” incohesive object. The point is not that this single Payment
creation task in itself makes the Register incohesive, but as part of a larger picture of overall
responsibility assignment, it may suggest a trend toward low cohesion.

And most important in terms of developing skills as an object designer, regardless of the final design
choice, the valuable thing is that at least a developer knows to consider the impact on cohesion.

Since the second design (shown graphically below) supports both high cohesion and low coupling, it
is desirable.

Object Oriented Analysis and Design Object Design with Patterns

Compiled by Roshan Chitrakar 11 of 13

5.1.4.3.Contraindications
There are a few cases in which accepting lower cohesion is justified.

One case is the grouping of responsibilities or code into one class or component to simplify
maintenance by one person (although be warned that such grouping may also make maintenance
worse). But for example, suppose an application contains embedded SQL statements that by other
good design principles should be distributed across ten classes, such as ten “database mapper”
classes. Now, it is common that only one or two SQL experts know how to best define and maintain
this SQL even if there are dozens of object-oriented programmers on the project. The software
architect may decide to group all the SQL statements into one class, RDBOperations, so that it is
easy for the SQL expert to work on the SQL in one location.

Another case for components with lower cohesion is with distributed server objects. Because of
overhead and performance implications associated with remote objects and remote communication, it
is sometimes desirable to create fewer and larger, less cohesive server objects that provide an
interface for many operations. This is also related to the pattern called Coarse-Grained Remote
Interface , in which the remote operations are made more coarse -grained in order to do or request
more work in remote operation call, because of the performance penalty of remote calls over a
network. As a simple example, instead of a remote object with three fine-grained operations
setName, setSalary and setHireDate , there is one remote operation setData , which receives a set of
data. This results in less remote calls, and better performance.

5.1.4.4.Benefits
• Clarity and ease of comprehension of the design is increased.

• Maintenance and enhancements are simplified.

• Low coupling is often supported.

• The fine grain of highly related functionality supports increased reuse because a cohesive
class can be used for a very specific purpose.

5.1.5. Controller

Systems receive external input events, typically involving a GUI operated by a person. Other
mediums of input include external messages such as in a call processing telecommunications switch,
or signals from sensors such as in process control systems.

In all cases, if an object design is used, some handler for these events must be chosen. The Controller
pattern provides guidance for generally accepted, suitable choices. The controller is a kind of facade
into the domain layer from the interface layer. Normally, a controller should delegate to other objects
the work that needs to be done; it coordinates or controls the activity. It does not do much work

The first category of controller is a facade controller representing the overall system, device, or a
subsystem. The idea is to choose some class name that suggests a cover, or facade, over the other
layers of the application, and that provides the main point of service calls from the UI layer down to
other layers. It could be an abstraction of the overall physical unit, a class representing the entire
software system, a sub system or any other concept that the designer chooses to represent the overall
system.

If a use-case controller is chosen, then there is a different controller for each use case. Note that this
is not a domain object; it is an artificial construc t to support the system (a Pure Fabrication in terms
of the GRASP patterns). For example, if an application contains use cases such as Process Sale and
Handle Returns, then there maybe a ProcessSaleHandler class and so forth. The use case controller
is an alternative to consider when placing the responsibilities in a facade controller leads to designs
with low cohesion or high coupling, typically when the facade controller is becoming ‘bloated’ with

Object Oriented Analysis and Design Object Design with Patterns

Compiled by Roshan Chitrakar 12 of 13

excessive responsibilities. A use-case controller is a good choice when there are many system events
across different processes; it factors their handling into manageable separate classes, and also
provides a basis for knowing and reasoning about the state of the current scenario in progress.

5.1.5.1.Problem/Solution pair
Solution: Assign the responsibility for receiving or handling a system event message to a class

representing one of the following choices:

• Represents the overall system, device, or subsystem (facade controller).

• Represents a use case scenario within which the system event occurs, often named
<UseCaseName>Handler, <UseCaseName>Coordinator, or <UseCaseName>Session
(use -case or session controller).

o Use the same controller class for all system events in the same use case scenario.

o Informally, a session is an instance of a conversation with an actor. Sessions can
be of any length, but are often organized in terms of use cases (use case sessions).

Problem: Who should be responsible for ha ndling an input system event?

An input system event is an event generated by an external actor. They are associated
with system operations - operations of the system in response to system events, just as
messages and methods are related.

For example, when a cashier using a POS terminal presses the “End Sale” button, he is
generating a system event indicating “the sale has ended.” Similarly, when a writer using
a word processor presses the “spell check” button, he is generating a system event
indicating “perform a spell check.”

A Controller is a non-user interface object responsible for receiving or handling a system
event. A Controller defines the method for the system operation.

5.1.5.2.Example

Object Oriented Analysis and Design Object Design with Patterns

Compiled by Roshan Chitrakar 13 of 13

Consider an application, where several system operations are there e.g. enterItem(), maleNewSale,
makePayment(), endSale() etc. During analysis, system operations may he assigned to the class
System, to indicate they are system operations. However, this does not mean that a soft ware class
named System fulfills them during design. Rather, during design, a Controller class is assigned the
responsibility for system operations

Who should be the controller for system events such as enterItem and endSale ? By the Controller
pattern, here are some choices:

Register,
POSSystem

represent the overall system,” device, or subsystem

ProcessSaleHandler,
ProcessSaleSession

represent a receiver or handler of all system events of a use ease
scenario

In terms of interaction diagrams, it means that one of the examples in the figure given below may be
useful.

The choice of which of these classes is the most appropriate controller is influenced by other factors.
During design, the system operations identified during system behavior analysis are assigned to one
or more controller classes, such as Register, as shown in the figure.

5.1.5.3.Benefits
Increased potential for reuse, and pluggable interfaces. It ensures that application logic is not
handled in the interface layer. The responsibilities of a controller could technically be handled in an
interface object, but the implication of such a design is that program code and logic related the
fulfillment of application logic would be embedded in interface or window objects. An interface-as-
controller design reduces the opportunity to reuse logic in future applications, since it is bound to a
particular interface (for example, window-like objects) that is seldom applicable in other
applications. By contrast, delegating a system operation responsibility to a controller supports the
reuse of the logic in future applications. And since the application logic is not bound to the interface
layer, it can be replaced with a different interface.

Reason about the state of the use case. It is sometimes necessary to ensure that system operations
occur in a legal sequence. or to be able to reason about the current state of activity and operations
within the use case that is underway. For example, it maybe necessary to guarantee that the
makePayment operation can not occur until the endSale operation has occurred. If so, this state
information needs to be captured somewhere; the controller is one reasonable choice, especially if
the same controller is used throughout the use case (which is recommended).

Source:

• Craig Larman, Applying UML and Patterns

: Register
enterItem(id,quantity)

: ProcessSaleHandler
enterItem(id,quantity)

